翻訳と辞書
Words near each other
・ Bottled in Blonde
・ Bottled in bond
・ Bottled Ocean
・ Bottled oxygen
・ Bottled Passion
・ Bottled water
・ Bottled water ban
・ Bottled water in the United States
・ Bottleneck
・ Bottleneck (engineering)
・ Bottleneck (K2)
・ Bottleneck (network)
・ Bottleneck (production)
・ Bottleneck (software)
・ Bottleneck Peak and Moon
Bottleneck traveling salesman problem
・ Bottlenose
・ Bottlenose (company)
・ Bottlenose dolphin
・ Bottlenose Dolphin Research Institute
・ Bottlenose skate
・ Bottlenose whale
・ Bottlenotes
・ Bottler
・ BottleRock Napa Valley
・ Bottlerocket Entertainment
・ Bottles (film)
・ Bottles to the Ground
・ Bottlesford
・ Bottletop


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Bottleneck traveling salesman problem : ウィキペディア英語版
Bottleneck traveling salesman problem
The Bottleneck traveling salesman problem (bottleneck TSP) is a problem in discrete or combinatorial optimization. It is stated as follows: Find the Hamiltonian cycle in a weighted graph which minimizes the weight of the most weighty edge of the cycle.〔 A2.3: ND24, pg.212.〕
The problem is known to be NP-hard. The decision problem version of this, "for a given length ''x'', is there a Hamiltonian cycle in a graph ''g'' with no edge longer than ''x''?", is NP-complete.〔
In an asymmetric bottleneck TSP, there are cases where the weight from node ''A'' to ''B'' is different from the weight from B to A (e. g. travel time between two cities with a traffic jam in one direction).
Euclidean bottleneck TSP, or planar bottleneck TSP, is the bottleneck TSP with the distance being the ordinary Euclidean distance. The problem still remains NP-hard, however many heuristics work better.
If the graph is a metric space then there is an efficient approximation algorithm that finds a Hamiltonian cycle with maximum edge weight being no more than twice the optimum.〔 2(6):269–272〕
==See also==

*Travelling salesman problem

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Bottleneck traveling salesman problem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.